

Elprotronic Inc.
16 Crossroads Drive
Richmond Hill,
Ontario, L4E-5C9
CANADA

Web site: www.elprotronic.com
E-mail: info@elprotronic.com
Fax: 905-780-2414
Voice: 905-780-5789

Copyright c©Elprotronic Inc. All rights reserved.

Disclaimer:

No part of this document may be reproduced without the prior written consent of Elprotronic Inc.
The information in this document is subject to change without notice and does not represent a
commitment on any part of Elprotronic Inc. While the information contained herein is assumed to
be accurate, Elprotronic Inc. assumes no responsibility for any errors or omissions.

In no event shall Elprotronic Inc, its employees or authors of this document be liable for special,
direct, indirect, or consequential damage, losses, costs, charges, claims, demands, claims for lost
profits, fees, or expenses of any nature or kind.

The software described in this document is furnished under a licence and may only be used or
copied in accordance with the terms of such a licence.

Disclaimer of warranties: You agree that Elprotronic Inc. has made no express warranties
to You regarding the software, hardware, firmware and related documentation. The software,
hardware, firmware and related documentation being provided to You “AS IS” without warranty
or support of any kind. Elprotronic Inc. disclaims all warranties with regard to the software,
express or implied, including, without limitation, any implied warranties of fitness for a particular
purpose, merchantability, merchantable quality or noninfringement of third-party rights.

Limit of liability: In no event will Elprotronic Inc. be liable to you for any loss of use, in-
terruption of business, or any direct, indirect, special incidental or consequential damages of any
kind (including lost profits) regardless of the form of action whether in contract, tort (including
negligence), strict product liability or otherwise, even if Elprotronic Inc. has been advised of the
possibility of such damages.

END USER LICENSE AGREEMENT
PLEASE READ THIS DOCUMENT CAREFULLY BEFORE USING THE SOFTWARE AND
THE ASSOCIATED HARDWARE. ELPROTRONIC INC. AND/OR ITS SUBSIDIARIES (“EL-
PROTRONIC”) IS WILLING TO LICENSE THE SOFTWARE TO YOU AS AN INDIVIDUAL,
THE COMPANY, OR LEGAL ENTITY THAT WILL BE USING THE SOFTWARE (REFER-
ENCED BELOW AS “YOU” OR “YOUR”) ONLY ON THE CONDITION THAT YOU AGREE
TO ALL TERMS OF THIS LICENSE AGREEMENT. THIS IS A LEGAL AND ENFORCA-
BLE CONTRACT BETWEEN YOU AND ELPROTRONIC. BY OPENING THIS PACKAGE,
BREAKING THE SEAL, CLICKING I AGREE BUTTON OR OTHERWISE INDICATING AS-
SENT ELECTRONICALLY, OR LOADING THE SOFTWARE YOU AGREE TO THE TERMS
AND CONDITIONS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO THESE TERMS
AND CONDITIONS, CLICK ON THE I DO NOT AGREE BUTTON OR OTHERWISE INDI-
CATE REFUSAL, MAKE NO FURTHER USE OF THE FULL PRODUCT AND RETURN IT
WITH THE PROOF OF PURCHASE TO THE DEALER FROM WHOM IT WAS ACQUIRED
WITHIN THIRTY (30) DAYS OF PURCHASE AND YOUR MONEY WILL BE REFUNDED.

1. License.
The software, firmware and related documentation (collectively the “Product”) is the property of
Elprotronic or its licensors and is protected by copyright law. While Elprotronic continues to own
the Product, You will have certain rights to use the Product after Your acceptance of this license.
This license governs any releases, revisions, or enhancements to the Product that Elprotronic may
furnish to You. Your rights and obligations with respect to the use of this Product are as follows:

YOU MAY:

• A. use this Product on many computers;

• B. make one copy of the software for archival purposes, or copy the software onto the hard
disk of Your computer and retain the original for archival purposes;

• C. use the software on a network

YOU MAY NOT:

• A. sublicense, reverse engineer, decompile, disassemble, modify, translate, make any attempt
to discover the Source Code of the Product; or create derivative works from the Product;

• B. redistribute, in whole or in part, any part of the software component of this Product;

• C. use this software with a programming adapter (hardware) that is not a product of Elpro-
tronic Inc.

2. Copyright
All rights, title, and copyrights in and to the Product and any copies of the Product are owned
by Elprotronic. The Product is protected by copyright laws and international treaty provisions.
Therefore, you must treat the Product like any other copyrighted material.

3. Limitation of liability.
In no event shall Elprotronic be liable to you for any loss of use, interruption of business, or any
direct, indirect, special, incidental or consequential damages of any kind (including lost profits)
regardless of the form of action whether in contract, tort (including negligence), strict product
liability or otherwise, even if Elprotronic has been advised of the possibility of such damages.

4. DISCLAIMER OF WARRANTIES.
You agree that Elprotronic has made no express warranties to You regarding the software, hardware,
firmware and related documentation. The software, hardware, firmware and related documentation
being provided to You “AS IS” without warranty or support of any kind. Elprotronic disclaims all
warranties with regard to the software and hardware, express or implied, including, without lim-
itation, any implied warranties of fitness for a particular purpose, merchantability, merchantable
quality or noninfringement of third-party rights.

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital devices, pursuant to Part
15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential
installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that
interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television
reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference
by one of more of the following measures:

• Reorient or relocate the receiving antenna,

• Increase the separation between the equipment and receiver,

• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected,

• Consult the dealer or an experienced radio/TV technician for help.

W arning: Changes or modifications not expressly approved by Elprotronic Inc. could void the user’s authority to operate the
equipment.

Contents

1 How To Use The Generic DLL 1
1.1 Introduction . 1
1.2 Functionality . 1
1.3 Portability . 4
1.4 Generic-FPA DLLSetup . 5
1.5 Function Calls to the Generic-FPA DLLand to API DLLs 7
1.6 Integrating Function Calls to Different API DLLs . 8
1.7 Return Value upon Calling a Generic-FPA DLLfunction 9
1.8 Timeouts . 9
1.9 Access Configuration Values by Name . 10
1.10 Using the Generic-FPA-TS DLLand Managing Your Own Thread Pool 11
1.11 Generic-FPA-TS DLLSetup . 14
1.12 config.ini conflict . 15

2 Commandline Interface 16
2.1 Introduction . 16
2.2 Functionality . 16
2.3 Server Configuration Flags . 17

2.3.1 DISCOVER . 17
2.3.2 Setupfile(required) . 17
2.3.3 -configtest . 19
2.3.4 -p <pipename> . 19
2.3.5 -b . 19
2.3.6 -f <level> . 19
2.3.7 -v <level> . 20
2.3.8 -of <filename> . 20
2.3.9 -ofr <filename> . 21
2.3.10 -of fpa <i> <filename> . 21
2.3.11 -ofr fpa <i> <filename> . 21

6

2.3.12 -ofq . 21
2.4 Getting Started and Example Usage . 21
2.5 Script Mode . 26

2.5.1 Client Configuration Flags . 29
2.5.2 -configtest . 29
2.5.3 -p <pipename> . 29
2.5.4 -i <i> . 29
2.5.5 -m <command + params> . 29

3 DLL Functions 30

List of Figures

1.1 Multi-FPA DLL overview . 2
1.2 Generic-FPA DLL overview . 3
1.3 Generic-FPA-TS DLLoverview . 12

2.1 Generic-Command-line overview . 18
2.2 Generic-Command-line server process . 23
2.3 Generic-Command-line client process . 24
2.4 Generic-Command-line server process . 25
2.5 Generic-Command-line client process . 27
2.6 Generic-Command-line server process . 28

8

List of Tables

3.1 Generic-FPA DLL function compatibility (part 1/4) 31
3.2 Generic-FPA DLL function compatibility (part 2/4) 32
3.3 Generic-FPA DLL function compatibility (part 3/4) 33
3.4 Generic-FPA DLL function compatibility (part 4/4) 34
3.5 Generic-FPA-TS DLL function compatibility (part 1/4) 35
3.6 Generic-FPA-TS DLL function compatibility (part 2/4) 36
3.7 Generic-FPA-TS DLL function compatibility (part 3/4) 37
3.8 Generic-FPA-TS DLL function compatibility (part 4/4) 38

9

Chapter 1

How To Use The Generic DLL

1.1 Introduction

This chapter describes the Generic-FPA DLL, and explains how to use it. The Generic-FPA
DLL is a shared library that can control different types of Flash Programming Adapters (FPAs)
simultaneously. It is intended for users that need to use different types of FPAs to program a board
with multiple MCUs from different families and vendors. The Generic-FPA DLL can simultaneously
initialize, configure, program, and perform other operations on multiple, and different, FPAs such
as the MSP430, C2000, ARM, CC, MSP430-GP (Gang Pro), CC-GP (Gang Pro), ARM-GP (Gang
Pro) and future Elprotronic FPAs.

In addition to the Generic-FPA DLL, this document also describes a lower-level Generic-FPA-
TS DLL (a thread-safe DLL). The latter is intended for advanced users that wish to manage their
own thread pool, and control all FPAs in a totally independent fashion (execute different functions
on different FPAs in parallel). The Generic-FPA-TS DLL is described in greater detail in Section
1.10.

The Generic-FPA DLL is an alternative to already existing Multi-FPA DLLs provided by El-
protronic. It is meant to ease programming effort for customers wishing to: control different types
of FPAs together, by providing one top-level DLL, or to control FPAs independently, by providing
a thread-safe DLL. Similarly to Multi-FPA DLLs, the Generic-FPA DLL is multi-threaded and
can control up to 64 FPAs simultaneously; however, only in a broadcast-style fashion, where all
FPAs are executing the same command at the same time. Only the Generic-FPA-TS DLL allows
each FPA to be controlled independetly by each thread, where each FPA is executing a different
command at the same time.

1.2 Functionality

The Generic-FPA DLL was created to overcome a shortcoming of traditional Multi-FPA DLLs
demonstrated in the following example. If the programmer wanted to control FlashPro430 adapters

1

Elprotronic Inc. www.elprotronic.com

Figure 1.1: Multi-FPA DLL setup used to control multiple adapters of the same type.

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 How To Use The Generic DLL 2

Elprotronic Inc. www.elprotronic.com

Figure 1.2: Generic-FPA DLL setup used to control adapters of different types. Threads are managed by
the Generic-FPA DLL and allow synchronous control of up to 64 adapters.

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 How To Use The Generic DLL 3

Elprotronic Inc. www.elprotronic.com

they could use the Multi-FPA DLL (shown in Figure 1.1) for the MSP430 (MSP430FPA.dll). In
order to control another type of adapter, like the FlashPro2000, it was necessary to load another
Multi-FPA DLL for the C2000 (FlashPro2000-FPA.dll). This was a messy solution due to some-
times conflicting prototypes, and having to issue the same commands to different Multi-FPA DLLs.
Rather than dealing with many different Multi-FPA DLLs, the Generic-FPA DLL (shown in Figure
1.2) combines all their functionality and provides a unified shared library for controlling all types
of FPAs, synchronously.

Figures 1.1 and 1.2 provide an overview of how the Multi-FPA DLL and the Generic-FPA
DLL control FPAs, respectively. Shown in Figure 1.1, a single Multi-FPA DLL controls multiple
API DLLs, each of which is responsible for communicating with one adapter. When the user appli-
cation calls a function from the Multi-FPA DLL, it in turns uses a thread pool to issue simultaneous
calls to the same function in all the API DLLs. Using this scheme the user application can control
up to 64 FPAs synchronously without managing its own thread pool or the usual complications
associated with multi-threaded programming. The Generic-FPA DLL shown in Figure 1.2 expands
upon the Multi-FPA DLL concept and provides additional capabilities without compromising pre-
vious features. The Generic-FPA DLL can also control up to 64 FPAs and manages its own thread
pool allowing for synchronous control of all adapters, just like the Multi-FPA DLL. Additional
features of the Generic-FPA DLL include:

• API DLLs can be of any type. The API DLLs currently supported are:

– MSP430FPA1.dll

– GangPro430FPA1.dll

– FlashPro2000-FPA1.dll

– FlashProCC-FPA1.dll

– GangProCC-FPA1.dll

– FlashProARM-FPA1.dll

– GangProARM-FPA1.dll

• A new thread-safe Generic-FPA-TS DLL (shown in Figure 1.3) is provided for advanced users.
Users can use it and ignore the top-level Generic-FPA DLL to manage their own thread pool
and control FPAs in a totally independent fashion.

1.3 Portability

Any existing application that uses a Multi-FPA DLL (sometimes referred to as a Selector in other
User Guides) for any of the specific FPAs listed above can be ported to use the Generic-FPA
DLL with minimal effort. This is because at its core, the Generic-FPA DLL relays commands
to the appropriate API DLL depending on which adapter is being accessed. The Generic-FPA

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 How To Use The Generic DLL 4

Elprotronic Inc. www.elprotronic.com

DLL combines all functions from the different API DLLs, usually with the same name and param-
eters, except in cases where there are conflicting prototypes for identically named functions. In
cases of conflict, a prefix is added to distinguish special cases.

For example, the function F Set PC and RUN, takes different parameters for different adapters.
Such as:

ChipCon: F_CC_Set_PC_and_RUN(INT_X xram_en, INT_X PC_addr)

Others: F_Set_PC_and_RUN(INT_X PC_addr)

The behaviour of each call to this function is dependent on the API DLL being invoked. This
means that, when the target adapter is the FlashPro430, the call to F Set PC and RUN goes
to the MSP430FPA1.dll, when the target adapter is the FlashPro-ARM, the call goes to the
FlashProARM-FPA1.dll, and so on. In summary, the Generic-FPA DLL forwards function calls
and parameters to the proper API DLL, as determined during initialization.

1.4 Generic-FPA DLLSetup

Similarly to the Multi-FPA DLL, the Generic-FPA DLL should be initialized using a setup file or
setup string. Below is an example of a setup file where the user wishes to use 4 different adapters:

FPA-1 20130001 TYPE-MSP

FPA-2 20130002 TYPE-C2000

FPA-4 20130004 TYPE-ARM

FPA-5 20130005 TYPE-CC

A setup string for the same adapters:

*# FPA-1 20130001 TYPE-MSP FPA-2 20130002 TYPE-C2000 FPA-4 20130004 TYPE-ARM FPA-5

20130005 TYPE-CC

The DLL accepts both formats, but only the setup file can be used for Generic-CommandLine-
Server initialization.

The first column specifies the FPA index, which can be an arbitrary number between 1 and 64. An
FPA index is used to identify a particular adapter when using the Generic-FPA DLL. The second
column lists the specific serial number (SN) that the adapter should have if it is to be initialized
properly. That number can be read from the adapter’s sticker label on the actual physical product.
If the SN between the setup file and the adapter label doesn’t match, then initialization for that
specific adapter will fail and the user won’t be able to control it. The previous two columns
were already present in setup files used for the Multi-FPA DLL. A setup file for the Generic-FPA
DLL requires an additional third column which identifies the adapter type. Currently, seven types
are supported:

• ”TYPE-MSP” - uses MSP430FPA1.dll

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 How To Use The Generic DLL 5

Elprotronic Inc. www.elprotronic.com

• ”TYPE-MSP-GP” - uses GangPro430FPA1.dll

• ”TYPE-C2000” - uses FlashPro2000-FPA1.dll

• ”TYPE-CC” - uses FlashProCC-FPA1.dll

• ”TYPE-CC-GP” - uses GangProCC-FPA1.dll

• ”TYPE-ARM” - uses FlashProARM-FPA1.dll

• ”TYPE-ARM-GP” - uses GangProARM-FPA1.dll

To initialize the Generic-FPA DLL, load it and invoke the function:

INT_X F_OpenInstancesAndFPAs(char *FileName)

As input provide the setup file or setup string, and the function will return the number of success-
fully initialized adapters. For the setup file provided here, if the proper adapters with the listed
SNs are connected to the computer, then the function will return 4. This action will also create 4
worker threads inside the Generic-FPA DLL ready to invoke functions on API DLLs in parallel.

Adapter Type in Setup File is not Explicitly Verified During Initialization

If in the setup file the user enters proper SNs, but incorrect adapter types (TYPE-CC instead of TYPE-MSP),
F OpenInstancesAndFPAs will still succeed for that adapter. However, the incorrectly identified adapter will return
errors on API DLL calls.

If you don’t know what FPAs are connected, you can call the function:

char * F_DiscoverFPAs(char *type)

As input provide one of the types, ”MSP”, ”CC”, etc. The type parameter specifies which API-DLL
you want to use to query for connected FPAs. If your working directory contains all API-DLLs
then it doesn’t matter which type you select here. The function will return a parsable string that
can be used to extract FPA types and serial numbers. An example string is shown below:

1 SN=20130005

HW ID=6, HW sub-ID=1

Full Access=1, Interface Type=3

Access Key=1

HW PN=USB-FPA-6.1

Adapter Desc=FlashPro-ARM

Once initialized, individual FPAs can be enabled or disabled using the following functions in a
manner identical to previous Multi-FPA DLLs:

void F_Enable_FPA_index(BYTE fpa)

void F_Disable_FPA_index(BYTE fpa)

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 How To Use The Generic DLL 6

Elprotronic Inc. www.elprotronic.com

The input parameter for these functions is the FPA index, which for the chosen setup file would be
indices 1, 2, 4, and 5. Once enabled, an FPA can accept commands. After calling F OpenInstancesAndFPAs,
all successfully initialized FPAs are enabled by default. To double-check at run-time the assigned
type of each FPA, call the function:

char * F_Get_FPA_type(BYTE fpa)

For the specified FPA index, between 1 and 64, this function will return the string identifier, ”MSP”,
”MSP-GP”, ”C2000”, ”CC”, ”CC-GP”, ”ARM”, or ”ARM-GP”.

Before invoking other functions on the Generic-FPA DLL the user should first select which
FPAs they want commands sent to, using the following functions:

INT_X F_Set_FPA_index(BYTE fpa)

BOOL F_Get_FPA_index(BYTE fpa)

Set the desired FPA index, from 1 to 64, or 0 (zero) to send commands to all enabled FPAs. Verify
your selection with the latter function. This might seem redundant with the enable/disable option
but it is useful if some FPAs encounter errors. If, for example, 1 out of 4 FPAs fails for a Write or
Verify function, it can be disabled from receiving further commands using the F Disable FPA index
function. While the fpa index is set to 0 (zero) the user can still issue commands to the other 3
enabled FPAs simultaneously. In summary, the Generic-FPA DLL will forward function calls only
to enabled and selected FPAs.

1.5 Function Calls to the Generic-FPA DLLand to API DLLs

Some Generic-FPA DLL functions are not forwarded to API DLLs because they only read/write
metadata within the top-level DLL. In general, these functions handle initialization for the Generic-
FPA DLL and some bookkeeping. These functions are:

F_OpenInstancesAndFPAs

F_CloseInstances

F_Enable_FPA_index

F_Disable_FPA_index

F_Set_FPA_index

F_Get_FPA_index

F_Get_FPA_type

F_LastStatus

F_Set_Timeout_Short

F_Set_Timeout_Long

F_Trace_ON

F_Trace_OFF

F_Debug_Enable

F_Debug_Disable

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 How To Use The Generic DLL 7

Elprotronic Inc. www.elprotronic.com

F_GenericDLLVer

F_GenericTSDLLVer

Other Generic-FPA DLL functions are forwarded to selected API DLLs. Individual functions are
described in greater detail in Chapter 3.

1.6 Integrating Function Calls to Different API DLLs

Since the Generic-FPA DLL exports all functions from supported API DLLs, the user applica-
tion can call functions that are not supported by some specific adapter types. In these cases
the function call is simply ignored for adapters which don’t support it, without interrupting
calls to other adapters that do. This feature will be demonstrated using the example of calling
CC Set PC and RUN, and Set PC and RUN.

Recall the setup introduced in Section 1.4. The user selects all FPAs as enabled and intends to is-
sue commands simultaneously to 4 FPAs by selecting FPA index to 0 (zero) using F Set FPA index.
Looking at individual API DLL headers, the MSP430 and ARM adapter types (FPAs 1, and 4 re-
spectively) support the function:

INT_X F_Set_PC_and_RUN(INT_X PC_addr)

and the CC adapter type (FPA 5) supports the expanded function:

INT_X F_CC_Set_PC_and_RUN(INT_X xram_en, INT_X PC_addr)

and the C2000 adapter type (FPA 2) doesn’t support any of these two functions.
Invoking F Set PC and RUN on the Generic-FPA DLL will invoke this function on API DLLs

for FPAs 1, and 4, whereas API DLLs for FPAs 2, and 5 will not be called. Conversely invoking
F CC Set PC and RUN on the Generic-FPA DLL will invoke this function on the API DLL for
FPA 5, whereas API DLLs for FPAs 1, 2, and 4 will not be called. When a function call is
ignored for a specific FPA, that adapter’s API DLL is not called and the Generic-FPA DLL will
instead set the return value as ELP ENOTIMP for that FPA. The same is true for functions only
supported by GP FPAs, and vice-versa. Most core functions such as AutoProgram, Memory Erase,
Memory Write, Memory Verify, etc. are supported by all FPA types with identical prototypes
therefore no alternatives are necessary.

Rather than guessing which functions are supported by which FPA types, the user can reference
the tables shown in Chapter 3 or run the Generic-FPA DLL in debug mode with the following
functions:

INT_X F_Debug_Enable();

INT_X F_Debug_Disable();

These functions return the new debug state, therefore the first function should return 1 and the
second should return 0(zero). Once debug is enabled, function calls are no longer forwarded to API

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 How To Use The Generic DLL 8

Elprotronic Inc. www.elprotronic.com

DLLs, but instead return either ELP IMPL, to signify that the function is implemented for that
FPA type, or return ELP ENOTIMP to signify the opposite. This is useful during development,
to double-check that the desired function is supported for sepecific adapters. An example of how
to use debug to iterate over functions is shown in the Generic-FPA DLL Demo.

1.7 Return Value upon Calling a Generic-FPA DLLfunction

As is shown in Figure 1.2, a single function invocation of the Generic-FPA DLL is translated into
multiple individual calls to API DLLs for all selected FPAs. If 4 FPAs are selected then invoking
F Initialization on Generic-FPA DLL will invoke F Initialization on 4 API DLLs. Two scenarios
are possible:

• All API DLL calls return the same value,

• At least one API DLL call returns a different value.

In the first scenario the return value from the Generic-FPA DLL is simply the return value from one
of the API DLLs for that function invocation. Since all return values are the same, no information
is lost. In the second scenario, where return values are different, the return value from the Generic-
FPA DLL will be FPA UNMATCHED RESULTS for that function invocation (with exception to
functions that return void). This behaviour is identical to Multi DLLs. To retrieve the result for
each FPA use the function:

INT_X F_LastStatus(BYTE fpa)

As input the user should provide the FPA index of the adapter whose return value is desired, and
as output this function will give the return value of the last invoked function on the API DLL for
that adapter.

1.8 Timeouts

Due to unforseen events, some Generic-FPA DLL calls can stall or worker threads responsible
for calling API DLLs can die. The most common cause of these stalls is that the corresponding
adapter is accidentally disconnected from the computer. To deal with these events, the Generic-
FPA DLL maintains a timer per API DLL call, and a timeout per API DLL call type. After the
timeout expires, the responsible worker thread is restarted, and the respective API DLL is reloaded.
For timed-out calls, the function will return:

• FPA TIMEOUT RESTART SUCCESS

• FPA TIMEOUT RESTART FAILURE

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 How To Use The Generic DLL 9

Elprotronic Inc. www.elprotronic.com

The former means that the worker thread for that FPA is successfully restarted, and the API
DLL is reloaded. More specifically, a timeout restart involves killing the thread, creating a new
thread, and opening the FPA instance anew. Consequently, the API DLL state is not restored,
meaning that the API DLL state after restart is the same as after F OpenInstancesAndFPAs. The
program that picks up that return value should proceed to run F Initialization, F ConfigFileLoad
and F ReadCodeFile on that FPA. If the latter return value is received, the worker thread for the
timedout FPA was not restarted, most likely because the timedout FPA was not detected.

There are two timeout categories, short and long. The only functions with long timeouts are:

• F AutoProgram, and

• F Clear Locked Device

The short timeout is 30 seconds, and the long timeout is 60 seconds. These timeouts can be changed
with the following functions:

INT_X F_Set_Timeout_Short(int new_short_timeout)

INT_X F_Set_Timeout_Long(int new_long_timeout)

The input is the new timeout in seconds. The functions will return the new timeout value. The
minimum value that each timeout type can be set to is 1, but there is no maximum (beyond
INT MAX ofcourse). Setting an excessively large timeout effectively disables this feature.

1.9 Access Configuration Values by Name

There are two ways to configure an adapter, either with a prepared file or at run-time. Using the
function F ConfigFileLoad is a reliable way to obtain the same configuration on multiple reruns;
however, sometimes run-time reconfiguration is necessary, usually when tied to a GUI. Run-time
reconfiguration was done using the following functions:

INT_X F_GetConfig(INT_X index)

INT_X F_SetConfig(INT_X index, INT_X data)

To use these functions effectively it is necessary to have a list of indecies for all the configuration
parameters. However, since the Generic-FPA DLLallows the user to connect multiple different
FPA types, each FPA type will have its own list of indecies for configuration parameters. The same
index will refer to different configuration paramaters depending on which adapter type is being
configured.

To avoid this confusion, several new functions were added to reference configuration parameters
by name:

char * F_Get_Config_Name_List(INT_X index);

unsigned int F_Get_Config_Value_By_Name(char *name, int type);

INT_X F_Set_Config_Value_By_Name(char *name, unsigned int newValue);

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 How To Use The Generic DLL 10

Elprotronic Inc. www.elprotronic.com

The first function can be used to list all available configuration parameters for a selected FPA (an
example of how to do this is given in the Generic-FPA DLLDemo). Starting from index 0(zero),
the function will return strings denoting parameter names, until the function returns ”
0” after the index exceeds the length of the configuration parameter list.

The second function, F Get Config Value By Name, accepts a string as input, usually obtained
by iteratively running F Get Config Name List or reading a config file, and a second input param-
eter int type to specify one of the following actions:

• CONFSEL VALIDATE, returns 1 if name was a valid config parameter, 0(zero) otherwise.

• CONFSEL VALUE, returns value for configuration parameter given by name, or 0(zero) if
name wasn’t found.

• CONFSEL MIN, returns the minimum value for configuration parameter given by name, or
0(zero) if name wasn’t found.

• CONFSEL MAX, returns the maximum value for configuration parameter given by name, or
0(zero) if name wasn’t found.

• CONFSEL DEFAULT, returns the default value for configuration parameter given by name
if it is not set explicitly, or 0(zero) if name wasn’t found.

Since this function will return 0(zero) for an invalid name string regardless of type parameter, it is
best to validate a configuration parameter string first, before proceeding to obtain value or ranges.

The third function, F Set Config Value By Name changes the configuration parameter given by
name to the new value. Returns 1 if name was found and changed, and 0(zero) otherwise. This
function automatically trims the new value to fit within the min/max ranges. If the new value for
a configuration parameter is out of min/max range, it is set to DEFAULT value. The default value
is chosen when input is out of range because it is usually safe, and this is especially true when
setting read/write protection bits.

The aforementioned functions can be invoked on an FPA before it is configured, with the
exception of the ARM adapter type. Since the ARM adapter type can support multiple MCU
vendors with different configuration lists, at least one must be selected before proceeding. Use the
function F Set MCU Family Group to set a vendor first, otherwise the aforementioned functions
will always return 0 regardless of the name.

1.10 Using the Generic-FPA-TS DLLand Managing Your Own
Thread Pool

Advanced users can manage their own thread pool and control adapters using the thread-safe
Generic-FPA-TS DLL. An overview of this DLL is shown in Figure 1.3. Rather than relying on the
Generic-FPA DLL to create and manage a pool of threads, the user can create their own threads
and access adapters through the Generic-FPA-TS DLL in parallel in a safe, mutually exclusive

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 How To Use The Generic DLL 11

Elprotronic Inc. www.elprotronic.com

Figure 1.3: Generic-FPA-TS DLL setup where the user application can create its own thread pool and
control up to 64 different adapters simultaneously.

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 How To Use The Generic DLL 12

Elprotronic Inc. www.elprotronic.com

fashion. Mutexes inside the Generic-FPA-TS DLL prevent two threads from issuing commands to
the same adapter simultaneously; however, separate adapters can be controlled independently. All
functions that control FPAs support this functionality. Using this DLL the user can call different
functions for different adapters at the same time. The return value for each function call is only
the return value from that chosen adapter’s API DLL. Generic-FPA-TS DLL function calls that
can only be accessed by one thread at a time are metadata functions that handle init/deinit and
don’t call API DLLs. These functions are:

TS_AssignFPAs (new) - replaces F_OpenInstancesAndFPAs

TS_OpenOneInstance (new)

TS_CloseOneInstance (new)

TS_CloseInstances

All these aforementioned functions are protected by a single mutex. The exception is the function:

TS_GenericTSDLLVer

Which is a metadata function but can be accessed in parallel by all threads. Generic-FPA DLL func-
tions that do not exist in the Generic-FPA-TS DLL are:

F_OpenInstancesAndFPAs - replaced by TS_AssignFPAs

F_Enable_FPA_index

F_Disable_FPA_index

F_Get_FPA_index

F_Set_FPA_index

F_Set_Timeout_Short

F_Set_Timeout_Long

F_Trace_ON

F_Trace_OFF

F_Debug_Enable

F_Debug_Disable

F_LastStatus

F_GenericDLLVer

Most of the aforementioned functions are no longer necessary because each adapter is controlled by
a separate user thread. The Generic-FPA-TS DLL also does not support the timeout functionality
described earlier, since worker threads are no longer controlled explicitly by the DLL.

Function prototypes for the Generic-FPA-TS DLL differ only from the Generic-FPA DLL in
that an extra parameter, a thread struct t *ti, is necessary and the prefix TS is added. The extra
parameter is defined as follows:

typedef struct

{

int fpa_index;

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 How To Use The Generic DLL 13

Elprotronic Inc. www.elprotronic.com

int debug_mode;

int dll_call_status;

} thread_struct_t;

A pointer to this initialized structure needs to be passed very time a call is being made to most
Generic-FPA-TS DLL functions. The fpa index, between 1 and 64, specifies which adapter and the
corresponding API DLL is to be invoked.

Fpa Index 0 is Invalid - Each Thread Controls One FPA

The debug mode can be set to 1 if the user wishes to test calls to the Generic-FPA-TS DLL without
actually calling API DLLs (otherwise set debug to 0). The dll call status returns the status of the
call from the Generic-FPA-TS DLL to the application for debugging and error-checking purposes.
The values for dll call status can be:

• ELP CALLED - specific DLL function is supported by the API DLL of selected adapter, and
was called.

• ELP BUSY - DLL is busy serving another thread (two or more simultaneous calls were made
with same fpa index), non-blocking.

• ELP IMPL - specific DLL function is supported by the API DLL of selected adapter (returned
instead of ELP CALLED if debug mode == 1).

• ELP ENOTIMP - specific DLL function is not supported by the API DLL of selected adapter.

• ELP ERANGE - fpa index out of range. Must be between 1 and 64.

• ELP ENOINIT - API DLL for selected adapter did not initialize, or failed to load (API DLL
not present, etc.).

These status values can aid the developer in debugging applications using the Generic-FPA-TS
DLL. The return value of a function invocation for each thread is the result of calling the API
DLL for the selected adapter, or ELP ENOTIMP, if the selected adapter type does not support
the invoked function (calling TS CC Set PC and RUN with the MSP430 adapter selected would
return such a value). For functions that are not supported by the API DLL, the specific API DLL
is not actually called. Instead, metadata within the Generic-FPA-TS DLL keeps track of which
functions are supported by each API DLL and acts accordingly.

1.11 Generic-FPA-TS DLLSetup

The Generic-FPA-TS DLL differs in several ways from the Generic-FPA DLL, one of which is the
process of initialization. Whereas in the Generic-FPA DLL it is sufficient to call F OpenInstancesAndFPAs,
the Generic-FPA-TS DLL doesn’t support that function. Instead, initialization is split into two
steps:

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 How To Use The Generic DLL 14

Elprotronic Inc. www.elprotronic.com

1. One thread to call TS AssignFPAs with the same setup file or setup string used to call
F OpenInstancesAndFPAs described in Section 1.4:

INT_X TS_AssignFPAs(char *FileName)

The number of successfully initialized FPAs will be returned. For the given setup file this
number will be 4. At this stage, only metadata for each FPA is created and adapters can’t
be controlled yet.

2. Each worker thread calls TS OpenOneInstance with the thread struct t set to its FPA index:

INT_X TS_OpenOneInstance(thread_struct_t *ti)

Function will return 1 if successful, 0 (zero) otherwise.

If successful, each thread can use its thread struct t block to control different adapters indepen-
dently in parallel.

1.12 config.ini conflict

Multi-FPA DLLs for current adapters types, such as MSP430, CC, etc., implicitly use a local
config.ini file when calling F Initialization. The Generic-FPA DLL doesn’t support using config.ini
for the F Initialization function because each adapter type uses a different config.ini file. Instead,
delete any existing config.ini file in the current working directly, or invoke the following new function
on all FPAs:

INT_X F_Use_Config_INI(BYTE use);

Select 0(zero) as input to disable automatic loading of config.ini during initialization. Since the
config will not be loaded automatically from config.ini, instead invoke the following function to
explicitly load the desired config file:

INT_X F_ConfigFileLoad(char * filename)

Select the proper FPA index using F Set FPA index for each adapter and load the config files
separately.

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 How To Use The Generic DLL 15

Chapter 2

Commandline Interface

2.1 Introduction

This chapter describes an alternative way of utilizing the capabilities of the Generic-FPA-TS DLL.
Rather than incorporating the Generic-FPA-TS DLL into a custom application, the user can use
the standalone Generic-Command-line tool. This tool executes the same functions as are available
with the Generic-FPA-TS DLL, by parsing string input from the user and invoking the appropriate
API-DLLs.

To support all the necessary features, the Generic-Command-line tool is composed of two ap-
plications, a server application that controls programming, and a client application that issues
commands. Once started, the server is a persistent process that initializes a named pipe, initializes
FPAs connected to the computer, maintains state for initialized FPAs, and invokes the Generic-
FPA-TS DLL and associated API-DLLs for each FPA in use. The client application is stateless
with respect to programming, and can be executed on demand to send one or many commands to
the server.

The client application can be repeatedly executed from a script file with a few basic parameters
to send one command at a time. Alternatively, the client application can be kept running to be
used as a console for typing multiple commands over the course of the entire programming process.
The former is optimal for the production environment, whereas the latter is better for testing and
development. Multiple clients can connect to the same server at the same time, where the maximum
number is 64. Each client can choose which FPA to control independently.

There is no requirement to use our client application. The user can copy our client code and
integrate it into their own tester or production application.

2.2 Functionality

The Generic-Command-line relies on the Generic-FPA-TS DLL and associated API-DLLs. The
directory that contains the server application executable must also contain the Generic-FPA-

16

Elprotronic Inc. www.elprotronic.com

TS DLL and any API-DLLs such as the MSP430FPA1.dll, GangPro430FPA1.dll, FlashPro2000-
FPA1.dll, FlashProCC-FPA1.dll, GangProCC-FPA1.dll, FlashProARM-FPA1.dll, and GangProARM-
FPA1.dll. From a functional point of view, the server application is a basic addition on top of the
Generic-FPA-TS DLL. The server implements a thread-pool that allows it to handle commands and
replies to and from all FPAs asynchronously. Figure 2.1 shows the relationship between the com-
ponents that make up the command-line interface. A useful feature provided by this command-line
interface is that it allows control of production over the network using already provided executables,
for computers within the same workgroup as the server.

The client application code is provided as a demo in the installation package.

2.3 Server Configuration Flags

The server application is started by running the Generic-CommandLine-Server.exe executable. The
only mandatory parameter is the setup file that contains FPA serial numbers (SNs) and types used
for initialization. Multiple optional flags let you customize the server’s behavior. The server
executable can also be run in discovery mode, where it will print out metadata about connected
FPAs and exit.

2.3.1 DISCOVER

Information about FPAs connected to the computer running this executable will be printed out,
up to 64 FPAs. Use this to automatically generate a setup file.

>Generic-CommandLine-Server.exe DISCOVER

1 SN=20130005

HW ID=6, HW sub-ID=1

Full Access=1, Interface Type=3

Access Key=1

HW PN=USB-FPA-6.1

Adapter Desc=FlashPro-ARM

2 ...

2.3.2 Setupfile(required)

The file path, relative to the server process, that specifies the location of the setup file. The setup
file contains FPA SNs and adapter types to be used during initialization. An example setup file,
called FPAs-setup.ini is shown below:

FPA-1 20140001 TYPE-ARM

FPA-2 20140002 TYPE-ARM-GP

FPA-4 20140003 TYPE-C2000

FPA-5 20140004 TYPE-MSP

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 Commandline Interface 17

Elprotronic Inc. www.elprotronic.com

Figure 2.1: Generic-Command-line setup where the client application can control one, or up to 64 different
adapters simultaneously. Multiple clients can connect simultaneously to control each FPA
independently.

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 Commandline Interface 18

Elprotronic Inc. www.elprotronic.com

FPA-6 20140005 TYPE-MSP-GP

FPA-3 20140006 TYPE-CC

FPA-7 20140007 TYPE-CC-GP

In the example above, the computer where the server is running should have seven (7) FPAs
connected via USB (for that many you would usually need a hub). Since the command-line server
is running on top of the Generic-FPA-TS DLL, it can control different FPA types simultaneously.
A FlashPro-X adapter can be configured using any type, but still must be set to one type at a time
during initialization.

2.3.3 -configtest

Test configuration options, touch log files (open for append), and detect any errors in syntax. After
the configuration setup has been parsed the process will exit. Does not perform FPA initialization.

2.3.4 -p <pipename>

Custom pipe name that the server should listen on. By default this value is:

\\.\pipe\elprotronic

2.3.5 -b

Client commands to server will be blocking. Server will execute command and return result to
client that issued the command. No other commands can be executed until the server is finished
with an outstanding command. This is the easiest way to use the command-line interface because
it basically behaves as a single threaded application that performs one task at a time.

When blocking commands are disabled, client commands that require a call to the API-DLL will
be issued asynchronously and delegated to a worker thread inside the server process. The server will
respond to the client right away with a BUSY return value instead of the actual command return
value. This is because the command’s return value is not available yet. To obtain the command’s
return value, the client has to repeatedly poll the server using the LastStatus < fpa > command.
The LastStatus < fpa > command will return BUSY until the last command for that FPA has
finished executing, after which it will return the last command’s actual return value.

There is a separate worker thread for each initialized FPA, so one or multiple clients can issue
long running commands (like AutoProgram) to many FPAs at once. This allows asynchronous
and independent control of all programming adapters, which is useful for running different tests or
failure recovery when one or more target devices fail.

2.3.6 -f <level>

Client feedback level, between 0 and 3. The server responds to clients with strings that contain
a lot of useful information. However, once the user has optimized the programming flow, a lot of

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 Commandline Interface 19

Elprotronic Inc. www.elprotronic.com

feedback might be unnecessary and clutter output. Therefore, the feedback level specifies what
information is returned to the client after each command.

The higher the level, the more feedback is given. By lowering the feedback level you will exclude
feedback associated with a higher number. The options for feedback are:

• echo back original command (3),

• information related to issued command (3),

• errors related to issued command (2),

• return value from issued command (1), and

• busy status (1).

When level 0 is specified, the server will return an empty string. Clients have to request
command return values with the LastStatus < fpa > command. Naturally, level 0 option does
not apply to the LastStatus command.

2.3.7 -v <level>

Server verbose level, between 0 and 3. The server can print status messages to stdout/stderr
(default) or log file(s). This option specifies how much information should be printed.

The higher the level, the more information is printed. By lowering the verbose level you will
exclude information associated with a higher number. The options for information printed are:

• echo client command (3),

• information related to issued command (3),

• initialization results, number of FPAs, SNs, (2),

• return value from issued command (2), and

• errors related to issued command (1),

At level 0 the server produces no output, except if the initial configuration parameters are
incorrect.

2.3.8 -of <filename>

Send server non-error output to file with given filename. If this option is not specified, then server
output messages (depends on -v option) will go to stdout. If -of fpa option is specified then this
log file will not store FPA specific output.

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 Commandline Interface 20

Elprotronic Inc. www.elprotronic.com

2.3.9 -ofr <filename>

Send server error output to file with given filename. If this option is not specified, then server
output messages (depends on -v option) will go to stderr. If -ofr fpa option is specified then this
log file will not store FPA specific output. Errors during server initialization will always go to
stderr.

2.3.10 -of fpa <i> <filename>

Send server non-error output exclusive to FPA index i to given filename. If this option is not
specified, the output is combined with general server non-error output given by option -of.

2.3.11 -ofr fpa <i> <filename>

Send server error output exclusive to FPA index i to given filename. If this option is not specified,
the output is combined with general server error output given by option -ofr. Errors during server
initialization will always go to stderr.

2.3.12 -ofq

Stop server if write to any log file fails for any reason. Logging error will be dumped to -ofr
<filename>, or if that fails then to stderr before exit. The server will exit regardless of this setting
if it fails to open the provided files during initialization.

2.4 Getting Started and Example Usage

To setup the command-line interface follow these steps:

1. Download and install the Generic-DLL package from the website (under Download section).

2. Move the Generic-FPA-DLLs directory to a location where you can work freely without
administrator privileges (not Program Files directory).

3. Copy your config and code files to the bin sub-directory.

4. Your bin sub-directory should have:

• Generic-CommandLine-Server.exe - server process will control everything on machine
with FPAs

• CommandLine-Client.exe - client executable reads your commands and sends them to
server via named pipe

5. Source code for client is provided in the CommandLine-Client directory, it can be copied into
your tester for direct connection to Generic-CommandLine-Server process.

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 Commandline Interface 21

Elprotronic Inc. www.elprotronic.com

6. Connect your FPAs to the computer that will run the server executable.

7. Create a list file, i.e. FPAs-setup.ini, that will list the serial numbers (SNs) and types of your
FPAs. For example:

FPA-1 20130005 TYPE-ARM

FPA-2 20100565 TYPE-ARM

8. Open a command console and run server executable using the following example parameters:

Generic-CommandLine-Server.exe -f 3 -v 3 FPAs-setup.ini -b

You can list the available options and their description by simply running the executable with
no parameters. To widen the command console for easier viewing, right click the top bar of
the window, go to properties− >layout− >window size and increase that number.

9. Now the server is running in verbose mode and you should get lots of feedback. An example
of what you should see after initialization is shown in Figure 2.2. An important option here
is -b which will cause calls to the server to be blocking. In this mode the server will execute
commands synchronously and only respond to the client when the command has finished. This
mode is the easiest to start using the command-line tool. If you wish to connect multiple
clients in a production setup, and control all FPAs independently of each other, you would
disable the blocking option.

10. Run client executable with no parameters. The actual location of the client executable is
irrelevant because all file paths read are relative to the server process. The client can also
run remotely if the two computers are in the same work group. For a remote connection you
should modify the pipe name in the client to reflect the correct path to the server computer.

CommandLine-Client.exe

11. When the client has started, it will automatically connect to the pipe specified in the source
code. For a network connection, enter the server’s computer name instead of the dot. The
two computers should be in the same work group. You might also have to log into the server
computer from the client computer using the Windows Explorer network browser first (double
click the server computer and enter credentials), before the remote pipe connection is allowed.

12. Once connected to the server, you can begin typing commands or type HELP for a list of
available commands. Commands are not case sensitive. Listed commands are identical to DLL
commands, except that there is no F or TS prefix. Command parameters are separated by
spaces instead of contained inside brackets. When the client first connects, its designated FPA
index is -1, meaning it cannot control any FPA, but it can still issue metadata commands. For

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 Commandline Interface 22

Elprotronic Inc. www.elprotronic.com

Figure 2.2: Generic-Command-line server process started with the FPA setup file as input (required). Two
FPAs specified in the setup file were successfully initialized, and the server is ready to accept
client connections.

example, it can change its FPA index, or ask for the LastStatus from the FPA index provided
as parameter. The HELP command will list all commands for all FPA types when the FPA
index is -1. When the FPA index is changed to an initialized FPA, the HELP command will
list commands only for that FPA type (ARM, MSP, etc.)

13. The basic commands required to program a target MCU are given in the example below:

set_fpa_index 1

configfileload tm4c129.cfg

readcodefile arm-128k.txt

autoprogram 1

Figure 2.3 shows the result in the client console.

14. After the client has issued the aforementioned commands, the result in the server console is
shown in Figure 2.4.

15. To terminate the server process using the client type the CloseInstances command.

16. If you want the server to keep running and program more devices later on, simply close the
client application and reconnect later.

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 Commandline Interface 23

Elprotronic Inc. www.elprotronic.com

Figure 2.3: Generic-Command-line client process connected to the server. This application’s source code
can be integrated into your tester to communicate with the command-line server directly.

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 Commandline Interface 24

Elprotronic Inc. www.elprotronic.com

Figure 2.4: Generic-Command-line server process has been given the command to select FPA 1, load a
config file, load a code file, and finally the command to AutoProgram. When a new client
connects, its default FPA index is -1. The client must issue the set fpa index command to
control a specific FPA.

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 Commandline Interface 25

Elprotronic Inc. www.elprotronic.com

2.5 Script Mode

Often times the advantage of a command-line tool is that it can be easily integrated into a script
or batch file. The command-line client demo provided already comes with a few options that make
it ideal for script usage. Since the server process is the one that maintains all the state, the client
executable can be invoked and closed at will.

Figure 2.5 shows the client executing the same programming sequence as shown in the previous
section using a few optional flags. The client connects to the specified pipe name, selects the
chosen FPA index, and invokes the desired command. The client executable is ran three times to
execute each of the commands separately. Figure 2.6 shows the server output for this programming
sequence.

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 Commandline Interface 26

Elprotronic Inc. www.elprotronic.com

Figure 2.5: Generic-Command-line client process has been given the options to connect to a desired pipe
name, select FPA 1, and invoke a given command. After the reply is received, the client exits
and can be ran again to invoke another command.

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 Commandline Interface 27

Elprotronic Inc. www.elprotronic.com

Figure 2.6: Generic-Command-line server process output when client process is invoking one command at
a time. The client flags select the appropriate FPA index and command to be executed.

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 Commandline Interface 28

Elprotronic Inc. www.elprotronic.com

2.5.1 Client Configuration Flags

The client application source code is provided in the installation package. Nevertheless, a few useful
flags were added to this demo application to allow it to function easily in scripts and batch files.
Feel free to modify the client application as you wish, or integrate it into your tester.

2.5.2 -configtest

Test configuration options, and detect any errors in syntax. After the configuration setup has been
parsed the process will exit.

2.5.3 -p <pipename>

Custom pipe name that the client should connect to. By default this value is:

\\.\pipe\elprotronic

If the server process is on a remote computer, an example pipe name would be:

\\SERVER-PC\pipe\elprotronic

If you want to connect over the network, the two computers should be in the same work group.
You might also have to log into the server computer from the client computer using the Windows
Explorer network browser first (double click the server computer and enter credentials), before the
remote pipe connection is allowed.

2.5.4 -i <i>

When client connects, change to specified FPA index right away. Choose between 1 and 64.

2.5.5 -m <command + params>

Issue one shot command and exit, useful with -i option for scripts. Everything after -m flag will be
formed into one string as a command with parameters.

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 Commandline Interface 29

Chapter 3

DLL Functions

This chapter lists all Generic-FPA DLL and Generic-FPA-TS DLL functions, their API DLL equiv-
alents, and which Flash Programming Adapters (FPAs) support them. Tables 3.1, 3.2, 3.3, and
3.4 list Generic-FPA DLLfunctions, whereas Tables 3.5, 3.6, 3.7, and 3.8 list Generic-FPA-TS
DLL functions.

The first table of each series starts off by listing metadata functions that do not explicitly
call API DLLs, but instead are used to configure the Generic-FPA DLL or Generic-FPA-TS DLL.
These functions do not have an API DLL equivalent because they are used to setup and control the
environment of the top-level DLL so that in can work properly. Calls to the remaining functions
are forwarded to selected and enabled FPAs and their respective API DLLs. The table columns
provide the following information:

1. Generic-FPA DLL or Generic-FPA-TS DLL Function Name,

2. Equivalent API DLL Function Name (not applicable to metadata functions),

3. Function supported by MSP FPAs (MSP430FPA1.dll).

4. Function supported by MSP-GP FPAs (GangPro430FPA1.dll).

5. Function supported by C2000 FPAs (FlashPro2000-FPA1.dll).

6. Function supported by CC FPAs (FlashProCC-FPA1.dll).

7. Function supported by CC-GP FPAs (GangProCC-FPA1.dll).

8. Function supported by ARM FPAs (FlashProARM-FPA1.dll).

9. Function supported by ARM-GP FPAs (GangProARM-FPA1.dll).

Columns 3-8 denote support for individual FPA types and their respective API DLLs. If the
function is supported then a 1 (one) is entered in the corresponding cell; conversely, if the function
is not supported then a 0 (zero) is entered in that cell.

30

Elprotronic Inc. www.elprotronic.com

Generic-FPA DLLFunction Name API DLL Function Name MSP MSP-

GP

C2000 CC CC-

GP

ARM ARM-

GP

F DiscoverFPAs N/A 1 1 1 1 1 1 1

F OpenInstancesAndFPAs N/A 1 1 1 1 1 1 1

F CloseInstances N/A 1 1 1 1 1 1 1

F Enable FPA index N/A 1 1 1 1 1 1 1

F Disable FPA index N/A 1 1 1 1 1 1 1

F Set FPA index N/A 1 1 1 1 1 1 1

F Get FPA index N/A 1 1 1 1 1 1 1

F Get FPA type N/A 1 1 1 1 1 1 1

F LastStatus N/A 1 1 1 1 1 1 1

F Set Timeout Short N/A 1 1 1 1 1 1 1

F Set Timeout Long N/A 1 1 1 1 1 1 1

F Trace ON N/A 1 1 1 1 1 1 1

F Trace OFF N/A 1 1 1 1 1 1 1

F Debug Enable N/A 1 1 1 1 1 1 1

F Debug Disable N/A 1 1 1 1 1 1 1

F GenericDLLVer N/A 1 1 1 1 1 1 1

F GenericTSDLLVer N/A 1 1 1 1 1 1 1

F DLLTypeVer F DLLTypeVer 1 1 1 1 1 1 1

F Check FPA access F Check FPA access 1 1 1 1 1 1 1

F Get FPA SN F Get FPA SN 1 1 1 1 1 1 1

F Get FPA Label F Get FPA Label 1 0 1 1 0 1 1

F Initialization F Initialization 1 1 1 1 1 1 1

F Use Config INI F Use Config INI 1 1 1 1 1 1 1

F Close All F Close All 1 1 1 1 1 1 1

F Power Target F Power Target 1 1 0 1 1 1 1

F Reset Target F Reset Target 1 1 1 1 1 1 1

F ReportMessage F ReportMessage 1 1 1 1 1 1 1

F Report Message F Report Message 1 1 1 1 1 1 1

F ReadCodeFile F ReadCodeFile 0 0 1 0 1 1 1

F MSP ReadCodeFile F ReadCodeFile 1 1 0 0 0 0 0

F CC ReadCodeFile F ReadCodeFile 0 0 0 1 0 0 0

F AppendCodeFile F AppendCodeFile 0 0 0 0 0 1 1

F ReadPasswFile F ReadPasswFile 0 0 1 0 0 0 0

F MSP ReadPasswFile F ReadPasswFile 1 1 0 0 0 0 0

F ConfigFileLoad F ConfigFileLoad 1 1 1 1 1 1 1

F SetConfig F SetConfig 1 1 1 1 1 0 0

F GetConfig F GetConfig 1 1 1 1 1 0 0

F Get Config Name List F Get Config Name List 1 1 1 1 1 1 1

F Get Config Value By Name F Get Config Value By Name 1 1 1 1 1 1 1

F Set Config Value By Name F Set Config Value By Name 1 1 1 1 1 1 1

F Put Byte to Buffer F Put Byte to Buffer 1 0 0 1 0 1 1

F Get Byte from Buffer F Get Byte from Buffer 1 0 0 1 0 1 0

F GetReportMessageChar F GetReportMessageChar 1 1 1 1 1 1 1

F Clr Code Buffer F Clr Code Buffer 1 1 1 1 1 1 1

F Put Byte to Code Buffer F Put Byte to Code Buffer 1 1 0 1 1 1 1

F Get Byte from Code Buffer F Get Byte from Code Buffer 1 1 0 1 1 1 1

F Put IEEEAddr64 to Buffer F Put IEEEAddr64 to Buffer 0 0 0 1 0 0 0

Table 3.1: The following table lists Generic-FPA DLL functions, their API DLL equivalents and which
FPAs support them (part 1/4).

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 DLL Functions 31

Elprotronic Inc. www.elprotronic.com

Generic-FPA DLLFunction Name API DLL Function Name MSP MSP-

GP

C2000 CC CC-

GP

ARM ARM-

GP

F Get IEEEAddr64 from Buffer F Get IEEEAddr64 from Buffer 0 0 0 1 0 0 0

F Put IEEEAddr Byte to Buffer F Put IEEEAddr Byte to Buffer 0 0 0 1 0 0 0

F Get IEEEAddr Byte from Buffer F Get IEEEAddr Byte from Buffer 0 0 0 1 0 0 0

F Put Byte to Password Buffer F Put Byte to Password Buffer 1 1 0 0 0 0 0

F Get Byte from Password Buffer F Get Byte from Password Buffer 1 1 0 0 0 0 0

F Get Targets Result F Get Targets Result 0 1 0 0 1 0 1

F Get Active Targets Mask F Get Active Targets Mask 0 1 0 0 1 0 1

F Get DCO constant F Get DCO constant 0 1 0 0 0 0 0

F Set DCO constant F Set DCO constant 0 1 0 0 0 0 0

F GP Test DCO Frequency F Test DCO Frequency 0 1 0 0 0 0 0

F Get DCO Freq result F Get DCO Freq result 0 1 0 0 0 0 0

F AutoProgram F AutoProgram 1 1 1 1 1 1 1

F VerifyFuseOrPassword F VerifyFuseOrPassword 1 1 0 0 0 0 0

F Memory Erase F Memory Erase 1 1 1 1 1 1 1

F Memory Blank Check F Memory Blank Check 1 1 1 1 1 1 1

F Memory Write F Memory Write 1 1 1 1 1 1 1

F Memory Verify F Memory Verify 1 1 1 1 1 1 1

F Memory Read F Memory Read 0 0 1 1 0 1 1

F MSP Memory Read F Memory Read 1 0 0 0 0 0 0

F Gang Flash Read F Gang Flash Read 0 1 0 0 1 0 0

F Memory Write Data F Memory Write Data 1 0 0 0 0 0 0

F Memory Read Data F Memory Read Data 1 0 0 0 0 0 0

F Write IEEE Address F Write IEEE Address 0 0 0 1 1 0 0

F Read IEEE Address F Read IEEE Address 0 0 0 1 1 0 0

F Write Lock Bits F Write Lock Bits 0 0 0 1 1 0 0

F Open Target Device F Open Target Device 1 1 1 1 1 1 1

F Close Target Device F Close Target Device 1 1 1 1 1 1 1

F Segment Erase F Segment Erase 1 1 1 1 1 1 1

F Get Sector Size F Get Sector Size 1 1 1 1 1 1 1

F Sectors Blank Check F Sectors Blank Check 1 1 1 1 1 1 1

F Copy Buffer to Flash F Copy Buffer to Flash 1 1 1 1 1 1 1

F Copy Flash to Buffer F Copy Flash to Buffer 1 0 1 1 0 1 0

F Copy All Flash to Buffer F Copy All Flash to Buffer 1 0 0 0 0 0 0

F Write Word F Write Word 1 1 0 0 0 0 0

F Read Word F Read Word 1 0 1 0 0 0 0

F Write Byte F Write Byte 1 1 0 0 0 0 0

F Read Byte F Read Byte 1 0 0 0 0 0 0

F Copy Buffer to RAM F Copy Buffer to RAM 1 1 0 0 0 0 0

F Copy RAM to Buffer F Copy RAM to Buffer 1 0 0 0 0 0 0

F Write Byte to XRAM F Write Byte to XRAM 0 0 0 1 1 0 0

F Read Byte from XRAM F Read Byte from XRAM 0 0 0 1 0 0 0

F Copy Buffer to XRAM F Copy Buffer to XRAM 0 0 0 1 1 0 0

F Copy XRAM to Buffer F Copy XRAM to Buffer 0 0 0 1 0 0 0

F Write Byte to direct RAM F Write Byte to direct RAM 0 0 0 1 1 0 0

F Read Byte from direct RAM F Read Byte from direct RAM 0 0 0 1 0 0 0

F Copy Buffer to direct RAM F Copy Buffer to direct RAM 0 0 0 1 1 0 0

F Copy direct RAM to Buffer F Copy direct RAM to Buffer 0 0 0 1 0 0 0

Table 3.2: The following table lists Generic-FPA DLL functions, their API DLL equivalents and which
FPAs support them (part 2/4).

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 DLL Functions 32

Elprotronic Inc. www.elprotronic.com

Generic-FPA DLLFunction Name API DLL Function Name MSP MSP-

GP

C2000 CC CC-

GP

ARM ARM-

GP

F Set PC and RUN F Set PC and RUN 1 1 0 0 0 1 1

F CC Set PC and RUN F Set PC and RUN 0 0 0 1 1 0 0

F Get MCU Data F Get MCU Data 0 0 1 1 0 1 1

F Get Targets Vcc F Get Targets Vcc 1 1 1 1 1 1 1

F Get CodeCS F Get CodeCS 1 1 1 1 1 1 1

F Get Device Info F Get Device Info 1 1 1 1 1 1 1

F Set MCU Name F Set MCU Name 1 1 1 1 1 1 1

F Set fpa io state F Set fpa io state 1 1 0 1 1 1 1

F Blow Fuse F Blow Fuse 1 1 0 0 0 0 0

F Restore JTAG Security Fuse F Restore JTAG Security Fuse 1 0 0 0 0 0 0

F Capture PC Addr F Capture PC Addr 1 0 0 0 0 1 0

F GP Capture PC Addr F Capture PC Addr 0 1 0 0 0 0 1

F Synch CPU JTAG F Synch CPU JTAG 1 1 0 0 0 1 1

F Adj DCO Frequency F Adj DCO Frequency 1 1 0 0 0 0 0

F Test DCO Frequency F Test DCO Frequency 1 0 0 0 0 0 0

F Customize F Customize 1 1 0 0 0 0 0

F init custom jtag F init custom jtag 1 0 0 0 0 0 0

F custom jtag stream F custom jtag stream 1 0 0 0 0 0 0

F Custom Function F Custom Function 1 0 0 0 0 0 0

F Put Word to Buffer F Put Word to Buffer 0 0 1 0 0 0 0

F Get Word from Buffer F Get Word from Buffer 0 0 1 0 0 0 0

F Put Word to Code Buffer F Put Word to Code Buffer 0 0 1 0 0 0 0

F Get Word from Code Buffer F Get Word from Code Buffer 0 0 1 0 0 0 0

F Put Word to CSM Buffer F Put Word to CSM Buffer 0 0 1 0 0 0 0

F Get Word from CSM Buffer F Get Word from CSM Buffer 0 0 1 0 0 0 0

F Write CSM Password F Write CSM Password 0 0 1 0 0 0 0

F Verify CSM Password F Verify CSM Password 0 0 1 0 0 0 0

F Verify Access to MCU F Verify Access to MCU 0 0 0 0 0 1 1

F Write Word to RAM F Write Word to RAM 0 0 1 0 0 0 0

F Set fpa IO F Set fpa IO 0 0 1 0 0 0 0

F Write Debug Register F Write Debug Register 0 0 0 0 0 1 1

F Write Locking Registers F Write Locking Registers 0 0 0 0 0 1 1

F Clear Locked Device F Clear Locked Device 0 0 0 0 0 1 1

F Lock MCU F Lock MCU 0 0 0 0 0 1 1

F ARM Write Byte to RAM F Write Byte to RAM 0 0 0 0 0 1 1

F ARM Write Word16 to RAM F Write Word16 to RAM 0 0 0 0 0 1 1

F ARM Write Word32 to RAM F Write Word32 to RAM 0 0 0 0 0 1 1

F ARM Read Byte F Read Byte 0 0 0 0 0 1 0

F ARM Read Word16 F Read Word16 0 0 0 0 0 1 0

F ARM Read Word32 F Read Word32 0 0 0 0 0 1 0

F ARM Read Bytes Block F Read Bytes Block 0 0 0 0 0 1 0

F ARM Write Bytes Block to RAM F Write Bytes Block to RAM 0 0 0 0 0 1 1

F Gang Read Byte F Gang Read Byte 0 0 0 0 0 0 1

F Gang Read Word16 F Gang Read Word16 0 0 0 0 0 0 1

F Gang Read Word32 F Gang Read Word32 0 0 0 0 0 0 1

F Gang Read Bytes Block F Gang Read Bytes Block 0 0 0 0 0 0 1

F ARM Get MCU Name list F Get MCU Name list 0 0 0 0 0 1 1

Table 3.3: The following table lists Generic-FPA DLL functions, their API DLL equivalents and which
FPAs support them (part 3/4).

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 DLL Functions 33

Elprotronic Inc. www.elprotronic.com

Generic-FPA DLLFunction Name API DLL Function Name MSP MSP-
GP

C2000 CC CC-
GP

ARM ARM-
GP

F Put IEEEAddr64 to Gang Buffer F Put IEEEAddr64 to Gang Buffer 0 0 0 0 1 0 0

F Get IEEEAddr64 from Gang Buffer F Get IEEEAddr64 from Gang Buffer 0 0 0 0 1 0 0

F Put IEEEAddr Byte to Gang Buffer F Put IEEEAddr Byte to Gang Buffer 0 0 0 0 1 0 0

F Get IEEEAddr Byte from Gang Buffer F Get IEEEAddr Byte from Gang Buffer 0 0 0 0 1 0 0

F ARM Set MCU Family Group F Set MCU Family Group 0 0 0 0 0 1 1

F Verify Lock Bits F Verify Lock Bits 0 0 0 1 1 0 0

F Put Byte to Gang Buffer F Put Byte to Gang Buffer 0 1 0 0 1 0 1

F Get Byte from Gang Buffer F Get Byte from Gang Buffer 0 1 0 0 1 0 1

F Copy Gang Buffer to Flash F Copy Gang Buffer to Flash 0 1 0 0 1 0 1

F Copy Flash to Gang Buffer F Copy Flash to Gang Buffer 0 1 0 0 1 0 1

F Copy Gang Buffer to RAM F Copy Gang Buffer to RAM 0 1 0 0 0 0 0

F Copy RAM to Gang Buffer F Copy RAM to Gang Buffer 0 1 0 0 0 0 0

F Get Lock Bits F Get Lock Bits 0 0 0 0 1 0 0

F Copy Gang Buffer to XRAM F Copy Gang Buffer to XRAM 0 0 0 0 1 0 0

F Copy XRAM to Gang Buffer F Copy XRAM to Gang Buffer 0 0 0 0 1 0 0

F Copy Gang Buffer to direct RAM F Copy Gang Buffer to direct RAM 0 0 0 0 1 0 0

F Copy direct RAM to Gang Buffer F Copy direct RAM to Gang Buffer 0 0 0 0 1 0 0

F Copy MCU Data to Buffer F Copy MCU Data to Buffer 0 0 0 0 1 0 0

F Get MCU Data from Buffer F Get MCU Data from Buffer 0 0 0 0 1 0 0

F GetProgressBar F GetProgressBar 1 1 1 1 1 1 1

F GetLastOpCode F GetLastOpCode 1 1 1 1 1 1 1

F Get Power Results F Get Power Results 1 1 1 1 1 1 1

Table 3.4: The following table lists Generic-FPA DLL functions, their API DLL equivalents and which
FPAs support them (part 4/4).

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 DLL Functions 34

Elprotronic Inc. www.elprotronic.com

Generic-FPA-TS DLLFunction Name API DLL Function Name MSP MSP-

GP

C2000 CC CC-

GP

ARM ARM-

GP

TS DiscoverFPAs N/A 1 1 1 1 1 1 1

TS AssignFPAs N/A 1 1 1 1 1 1 1

TS OpenOneInstance N/A 1 1 1 1 1 1 1

TS CloseOneInstance N/A 1 1 1 1 1 1 1

TS CloseInstances N/A 1 1 1 1 1 1 1

TS Get FPA Type N/A 1 1 1 1 1 1 1

TS GenericTSDLLVer N/A 1 1 1 1 1 1 1

TS DLLTypeVer F DLLTypeVer 1 1 1 1 1 1 1

TS Check FPA access F Check FPA access 1 1 1 1 1 1 1

TS Get FPA SN F Get FPA SN 1 1 1 1 1 1 1

TS Get FPA Label F Get FPA Label 1 1 1 1 1 1 1

TS Initialization F Initialization 1 1 1 1 1 1 1

TS Use Config INI F Use Config INI 1 1 1 1 1 1 1

TS Close All F Close All 1 1 1 1 1 1 1

TS Power Target F Power Target 1 1 0 1 1 1 1

TS Reset Target F Reset Target 1 1 1 1 1 1 1

TS ReportMessage F ReportMessage 1 1 1 1 1 1 1

TS Report Message F Report Message 1 1 1 1 1 1 1

TS ReadCodeFile F ReadCodeFile 0 0 1 0 0 1 1

TS MSP ReadCodeFile F ReadCodeFile 1 1 0 0 0 0 0

TS CC ReadCodeFile F ReadCodeFile 0 0 0 1 1 0 0

TS AppendCodeFile F AppendCodeFile 0 0 0 0 0 1 1

TS ReadPasswFile F ReadPasswFile 0 0 1 0 0 0 0

TS MSP ReadPasswFile F ReadPasswFile 1 1 0 0 0 0 0

TS ConfigFileLoad F ConfigFileLoad 1 1 1 1 1 1 1

TS SetConfig F SetConfig 1 1 1 1 1 0 0

TS GetConfig F GetConfig 1 1 1 1 1 0 0

TS Get Config Name List F Get Config Name List 1 1 1 1 1 1 1

TS Get Config Value By Name F Get Config Value By Name 1 1 1 1 1 1 1

TS Set Config Value By Name F Set Config Value By Name 1 1 1 1 1 1 1

TS Put Byte to Buffer F Put Byte to Buffer 1 0 0 1 0 1 1

TS Get Byte from Buffer F Get Byte from Buffer 1 0 0 1 0 1 0

TS GetReportMessageChar F GetReportMessageChar 1 1 1 1 1 1 1

TS Clr Code Buffer F Clr Code Buffer 1 1 1 1 1 1 1

TS Put Byte to Code Buffer F Put Byte to Code Buffer 1 1 0 1 1 1 1

TS Get Byte from Code Buffer F Get Byte from Code Buffer 1 1 0 1 1 1 1

TS Put IEEEAddr64 to Buffer F Put IEEEAddr64 to Buffer 0 0 0 1 0 0 0

TS Get IEEEAddr64 from Buffer F Get IEEEAddr64 from Buffer 0 0 0 1 0 0 0

TS Put IEEEAddr Byte to Buffer F Put IEEEAddr Byte to Buffer 0 0 0 1 0 0 0

TS Get IEEEAddr Byte from Buffer F Get IEEEAddr Byte from Buffer 0 0 0 1 0 0 0

TS Put Byte to Password Buffer F Put Byte to Password Buffer 1 1 0 0 0 0 0

TS Get Byte from Password Buffer F Get Byte from Password Buffer 1 1 0 0 0 0 0

TS Get Targets Result F Get Targets Result 0 1 0 0 1 0 1

TS Get Active Targets Mask F Get Active Targets Mask 0 1 0 0 1 0 1

TS Get DCO constant F Get DCO constant 0 1 0 0 0 0 0

TS Set DCO constant F Set DCO constant 0 1 0 0 0 0 0

TS GP Test DCO Frequency F Test DCO Frequency 0 1 0 0 0 0 0

Table 3.5: The following table lists Generic-FPA-TS DLL functions, their API DLL equivalents and which
FPAs support them (part 1/4).

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 DLL Functions 35

Elprotronic Inc. www.elprotronic.com

Generic-FPA-TS DLLFunction Name API DLL Function Name MSP MSP-
GP

C2000 CC CC-
GP

ARM ARM-
GP

TS Get DCO Freq result F Get DCO Freq result 0 1 0 0 0 0 0

TS AutoProgram F AutoProgram 1 1 1 1 1 1 1

TS VerifyFuseOrPassword F VerifyFuseOrPassword 1 1 0 0 0 0 0

TS Memory Erase F Memory Erase 1 1 1 1 1 1 1

TS Memory Blank Check F Memory Blank Check 1 1 1 1 1 1 1

TS Memory Write F Memory Write 1 1 1 1 1 1 1

TS Memory Verify F Memory Verify 1 1 1 1 1 1 1

TS Memory Read F Memory Read 0 0 1 1 0 1 1

TS MSP Memory Read F Memory Read 1 0 0 0 0 0 0

TS Gang Flash Read F Gang Flash Read 0 1 0 0 1 0 0

TS Memory Write Data F Memory Write Data 1 0 0 0 0 0 0

TS Memory Read Data F Memory Read Data 1 0 0 0 0 0 0

TS Write IEEE Address F Write IEEE Address 0 0 0 1 1 0 0

TS Read IEEE Address F Read IEEE Address 0 0 0 1 1 0 0

TS Write Lock Bits F Write Lock Bits 0 0 0 1 1 0 0

TS Open Target Device F Open Target Device 1 1 1 1 1 1 1

TS Close Target Device F Close Target Device 1 1 1 1 1 1 1

TS Segment Erase F Segment Erase 1 1 1 1 1 1 1

TS Get Sector Size F Get Sector Size 1 1 1 1 1 1 1

TS Sectors Blank Check F Sectors Blank Check 1 1 1 1 1 1 1

TS Copy Buffer to Flash F Copy Buffer to Flash 1 1 1 1 1 1 1

TS Copy Flash to Buffer F Copy Flash to Buffer 1 0 1 1 0 1 0

TS Copy All Flash to Buffer F Copy All Flash to Buffer 1 0 0 0 0 0 0

TS Write Word F Write Word 1 1 0 0 0 0 0

TS Read Word F Read Word 1 0 1 0 0 0 0

TS Write Byte F Write Byte 1 1 0 0 0 0 0

TS Read Byte F Read Byte 1 0 0 0 0 0 0

TS Copy Buffer to RAM F Copy Buffer to RAM 1 1 0 0 0 0 0

TS Copy RAM to Buffer F Copy RAM to Buffer 1 0 0 0 0 0 0

TS Write Byte to XRAM F Write Byte to XRAM 0 0 0 1 1 0 0

TS Read Byte from XRAM F Read Byte from XRAM 0 0 0 1 0 0 0

TS Copy Buffer to XRAM F Copy Buffer to XRAM 0 0 0 1 1 0 0

TS Copy XRAM to Buffer F Copy XRAM to Buffer 0 0 0 1 0 0 0

TS Write Byte to direct RAM F Write Byte to direct RAM 0 0 0 1 1 0 0

TS Read Byte from direct RAM F Read Byte from direct RAM 0 0 0 1 0 0 0

TS Copy Buffer to direct RAM F Copy Buffer to direct RAM 0 0 0 1 1 0 0

TS Copy direct RAM to Buffer F Copy direct RAM to Buffer 0 0 0 1 0 0 0

TS Set PC and RUN F Set PC and RUN 1 1 0 0 0 1 1

TS CC Set PC and RUN F Set PC and RUN 0 0 0 1 1 0 0

TS Get MCU Data F Get MCU Data 0 0 1 1 0 1 1

TS Get Targets Vcc F Get Targets Vcc 1 1 1 1 1 1 1

TS Get CodeCS F Get CodeCS 1 1 1 1 1 1 1

TS Get Device Info F Get Device Info 1 1 1 1 1 1 1

TS Set MCU Name F Set MCU Name 1 1 1 1 1 1 1

TS Set fpa io state F Set fpa io state 1 1 0 1 1 1 1

Table 3.6: The following table lists Generic-FPA-TS DLL functions, their API DLL equivalents and which
FPAs support them (part 2/4).

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 DLL Functions 36

Elprotronic Inc. www.elprotronic.com

Generic-FPA-TS DLLFunction Name API DLL Function Name MSP MSP-

GP

C2000 CC CC-

GP

ARM ARM-

GP

TS Blow Fuse F Blow Fuse 1 1 0 0 0 0 0

TS Restore JTAG Security Fuse F Restore JTAG Security Fuse 1 0 0 0 0 0 0

TS Capture PC Addr F Capture PC Addr 1 0 0 0 0 1 0

TS GP Capture PC Addr F Capture PC Addr 0 1 0 0 0 0 1

TS Synch CPU JTAG F Synch CPU JTAG 1 1 0 0 0 1 1

TS Adj DCO Frequency F Adj DCO Frequency 1 1 0 0 0 0 0

TS Test DCO Frequency F Test DCO Frequency 1 0 0 0 0 0 0

TS Customize F Customize 1 1 0 0 0 0 0

TS init custom jtag F init custom jtag 1 0 0 0 0 0 0

TS custom jtag stream F custom jtag stream 1 0 0 0 0 0 0

TS Custom Function F Custom Function 1 0 0 0 0 0 0

TS Put Word to Buffer F Put Word to Buffer 0 0 1 0 0 0 0

TS Get Word from Buffer F Get Word from Buffer 0 0 1 0 0 0 0

TS Put Word to Code Buffer F Put Word to Code Buffer 0 0 1 0 0 0 0

TS Get Word from Code Buffer F Get Word from Code Buffer 0 0 1 0 0 0 0

TS Put Word to CSM Buffer F Put Word to CSM Buffer 0 0 1 0 0 0 0

TS Get Word from CSM Buffer F Get Word from CSM Buffer 0 0 1 0 0 0 0

TS Write CSM Password F Write CSM Password 0 0 1 0 0 0 0

TS Verify CSM Password F Verify CSM Password 0 0 1 0 0 0 0

TS Verify Access to MCU F Verify Access to MCU 0 0 0 0 0 1 1

TS Write Word to RAM F Write Word to RAM 0 0 1 0 0 0 0

TS Set fpa IO F Set fpa IO 0 0 1 0 0 0 0

TS Write Debug Register F Write Debug Register 0 0 0 0 0 1 1

TS Write Locking Registers F Write Locking Registers 0 0 0 0 0 1 1

TS Clear Locked Device F Clear Locked Device 0 0 0 0 0 1 1

TS Lock MCU F Lock MCU 0 0 0 0 0 1 1

TS ARM Write Byte to RAM F Write Byte to RAM 0 0 0 0 0 1 1

TS ARM Write Word16 to RAM F Write Word16 to RAM 0 0 0 0 0 1 1

TS ARM Write Word32 to RAM F Write Word32 to RAM 0 0 0 0 0 1 1

TS ARM Read Byte F Read Byte 0 0 0 0 0 1 0

TS ARM Read Word16 F Read Word16 0 0 0 0 0 1 0

TS ARM Read Word32 F Read Word32 0 0 0 0 0 1 0

TS ARM Read Bytes Block F Read Bytes Block 0 0 0 0 0 1 0

TS ARM Write Bytes Block to RAM F Write Bytes Block to RAM 0 0 0 0 0 1 1

TS Gang Read Byte F Gang Read Byte 0 0 0 0 0 0 1

TS Gang Read Word16 F Gang Read Word16 0 0 0 0 0 0 1

TS Gang Read Word32 F Gang Read Word32 0 0 0 0 0 0 1

TS Gang Read Bytes Block F Gang Read Bytes Block 0 0 0 0 0 0 1

TS ARM Get MCU Name list F Get MCU Name list 0 0 0 0 0 1 1

TS ARM Set MCU Family Group F Set MCU Family Group 0 0 0 0 0 1 1

TS Verify Lock Bits F Verify Lock Bits 0 0 0 1 1 0 0

TS Put Byte to Gang Buffer F Put Byte to Gang Buffer 0 1 0 0 1 0 1

TS Get Byte from Gang Buffer F Get Byte from Gang Buffer 0 1 0 0 1 0 1

TS Copy Gang Buffer to Flash F Copy Gang Buffer to Flash 0 1 0 0 1 0 1

TS Copy Flash to Gang Buffer F Copy Flash to Gang Buffer 0 1 0 0 1 0 1

TS Copy Gang Buffer to RAM F Copy Gang Buffer to RAM 0 1 0 0 0 0 0

TS Copy RAM to Gang Buffer F Copy RAM to Gang Buffer 0 1 0 0 0 0 0

Table 3.7: The following table lists Generic-FPA-TS DLL functions, their API DLL equivalents and which
FPAs support them (part 3/4).

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 DLL Functions 37

Elprotronic Inc. www.elprotronic.com

Generic-FPA-TS DLLFunction Name API DLL Function Name MSP MSP-

GP

C2000 CC CC-

GP

ARM ARM-

GP

TS Put IEEEAddr64 to Gang Buffer F Put IEEEAddr64 to Gang Buffer 0 0 0 0 1 0 0

TS Get IEEEAddr64 from Gang Buffer F Get IEEEAddr64 from Gang Buffer 0 0 0 0 1 0 0

TS Put IEEEAddr Byte to Gang Buffer F Put IEEEAddr Byte to Gang Buffer 0 0 0 0 1 0 0

TS Get IEEEAddr Byte from Gang Buffer F Get IEEEAddr Byte from Gang Buffer 0 0 0 0 1 0 0

TS Get Lock Bits F Get Lock Bits 0 0 0 0 1 0 0

TS Copy Gang Buffer to XRAM F Copy Gang Buffer to XRAM 0 0 0 0 1 0 0

TS Copy XRAM to Gang Buffer F Copy XRAM to Gang Buffer 0 0 0 0 1 0 0

TS Copy Gang Buffer to direct RAM F Copy Gang Buffer to direct RAM 0 0 0 0 1 0 0

TS Copy direct RAM to Gang Buffer F Copy direct RAM to Gang Buffer 0 0 0 0 1 0 0

TS Copy MCU Data to Buffer F Copy MCU Data to Buffer 0 0 0 0 1 0 0

TS Get MCU Data from Buffer F Get MCU Data from Buffer 0 0 0 0 1 0 0

TS GetProgressBar F GetProgressBar 1 1 1 1 1 1 1

TS GetLastOpCode F GetLastOpCode 1 1 1 1 1 1 1

TS Get Power Results F Get Power Results 1 1 1 1 1 1 1

Table 3.8: The following table lists Generic-FPA-TS DLL functions, their API DLL equivalents and which
FPAs support them (part 4/4).

Generic-FPA DLL User Manual Rev.1.6 Sept-2016 DLL Functions 38

